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1. Introduction

The work described in this report was performed under Grant 9-AFOSR-

77-3400. The principle thrust of this work has been the development of

special purpose computer architectures aimed at two problem areas. The first

area deals with the use of hardware structures to simplify software develop-

ment and utilization. The second area deals with

processing systems for efficiently handling distributed tasks.

Certainly one of the largest cost factors in digital systems today is

that of software. The cost of hardware has constantly decreased over the

past ten years, and as a consequence, the use of hardware to replace some

software functions has become a real alternative. The lowering cost of

hardware also makes it possible to consider the application of large multi-

processing structures to spatially distributed problems such as weather fore-

casting and sociological system modelling. A third area of investigation

performed under this grant relates to both areas. This is the problem of

designing into large scale systems both fault tolerance and fault diagnosis.

These three problems represent the main thrust of the research undertaken

which is summarized in what follows.

2. Synopsis of Research Accomplishments

This section briefly describes the results of the research carried out

over the period August 1, 1978, to December 31, 1980. Basically, ten investi-

gations were undertaken which covered the three major areas of research men-

tioned above.
AIR FORCE OFFICE OF SCILNTIFIC RESEARCH (AVSO)
NOTICE OF TRAViA>TTAL TO DDC
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In the following sections, the results of this work will be described.

Section 3 gives a list of all reviewed publications either currently available

or in progress which have resulted from this work.

2.1 Hardware Implementation of Software [4, 5, 15]*

The concept of a piece of hardware to directly execute high-level

language has been around since about 1957. The advent of microprocessors

some six years ago and the continuing decrease in hardware costs have stirred

significant new interest in high level language processors. One of the investi-

gations carried out over the period of the grant was directed at developing a

general purpose, high-level language processing architecture. The goals of

this work were twofold. First, to have a system which could handle arbitrary

block structured, high-level languages. And secondly, to have a system which

can execute directly programs written in these languages as fast as or faster

than the software compiled version on standard computers. These concepts

led to three separate investigations. In the first, a high-level language,

or HLL, processor architecture was investigated. From this effort, two

further investigations were undertaken. In the first, a specific implantation

of the syntactical analysis section was examined. The resulting structure is

currently being constructed using five KIM-l microcomputers which do the

syntax analysis and parsing of the source statements in a highly parallel

fashion. The second effort spawned by the HLL machine began as an examination

of semantics processing and program execution. It ended up as a proposal

for a machine different from but similar to data flow machines which we

have termed a program structured computer.

* Number in brackets refer to entries in the Publications list. ,. ',,
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A summary of these efforts follow.

2.1.1 A High-Level Language Machine [4, 5]

Figure 1 shows, in block diagram form, a proposed architecture for a

high-level language processor which meets the goal stated above. As can be

seen from this figure, the system consists of four basic parts: the language

definition section, the storage section, the execution section, and the

analysis section. The operation of these components will be briefly described

below.

The language definition section basically consists of an ROM contain-

ing the language definition tables in a form easily utilized by the remaining

processors. The language definition tables contain both syntactic and semantic

information as it pertains to a program statement at all points in its parse.

In addition, the table also contains information about special constructs and

storage allocation which may not be directly definable in the syntax. Thus,

context dependent and some ambiguous grammars can be handled.

The storage unit consists of main storage and a controller. The con-

troller for this unit, basically, is responsible for handling all requests

to memory and language definition tables. This includes multiple access

results originating in various token and execution processors (see below).

The analysis section is used to both parse a program string and set

up the semantic information as it occurs. The main element is a token pro-

cessor of which there are several. At any given instant of time, one or more

(up to 8 for Fortran) token processors are involved in processing a current

text string. Basically, the operation of a token processor is as follows.

Initially, a set of token processors are enabled to look for all goal symbols

which are legal next symbols in the current input string. Typically, there

would be one token processor per goal symbol. Each processor will be

3
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responsible for preparing the syntactic and semantic information for their

particular goal symbol. If the next text symbol is not the goal symbol, then

the corresponding token processor will be removed from service. If the next

symbol is the anticipated goal symbol, the corresponding token processor will

then do two things. First, it will invoke a new set of token processors to

look for all legitimate next symbols. Secondly, it will pass on to the exe-

cution unit the semantic information associated with its goal symbol.

The execution unit is made up of a multiprocessing system consisting

of processor dedicated to specific types of computation processes. For example

there may be one or more processors to perform trigonometric computations with

others setting up data arrays and still others handling I/O. The main mechanism

for invoking an execution processor is an execution tree which is set up by the

token processor in the analysis unit. Each element or leaf in this tree con-

tains information about how the various operands are to be evaluated along

with points to the next elements, which serve as operands, functions, etc.,

for the current operation.

A simulation of such a high-level language processor was written for

a GRI-99 minicomputer and aimed at a text language called SLANG. In this

particular simulation, the input text was first analyzed completely and then

the resulting execution tree was processed. The simulated run time for these

processes was 20 ms on a particular benchmark program. The corresponding time

for compile/execute processing in the conventional way was on the order of

2 sec. Simulations of both Fortran IV and Algel 60 showed similar results.

Details of this work may be found in [4, 5].

2.1.2 A Token Processor Emulation [151

In order to more fully understand and evaluate the architecture pro-

posed in [4, 5], construction of an emulation for the analysis section was

5



undertaken. This system, based on the KIM-i microcomputer, is currently

under construction. Figure 2 shows the overall organization of the

analysis section, language definition tables, and the storage sections,

collectively termed the translator.

In these figures, programs are input to the analysis control unit,

ACU, which is implemented by a DEC PDP-ll/03. The ACU primarily is used to

minimally preprocess the programs. In this particular case, the PDP-11/03

serves several other functions as well. It is used to edit and create pro-

grams, generate the language definition tables, and generally monitor the

overall system operation.

The ACU passes the incoming program tokens onto the token processors,

TPl and TP2, via the buffer registers. The TP's then use the tokens thus

received to access the language definition table, LDT, via pointers found in

the ROM. Information accessed from the LDT consists of blocks of data or

information packets which identify what the appropriate syntax should be at

the next token. The TP's use this information to parse the incoming strings

and set up the appropriate execution trees in the Memory. The Memory also

serves to store intermediate tables generated by the TP's as well as the input

programs accessed by the ACU.

The bus protocols in the three-processor system shown in Figure 2 have

been developed and simulated on an Amdahl 470. Details of this work may be

found in [15].

2.1.2.1 Language Definition Table Generation

The architecture described in Mooney [4, 5] for a high-level language

processor requires that the language to be used be described by language

definition tables. The form of these tables is generally not convenient for

use by humans. Thus, some meta-language must be used for describing the

6
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various languages and this meta-language must then be translated into an

appropriate LDT.

The meta-language used here is the Backus-Naur form. The translation

procedure is in two parts. First, the BNF representation of the language used

is converted into a two-dimensional grammar which is basically a graph struc-

ture. Secondly, the graphical representation of the language is converted into

the form required by the TP's and is stored in the language definition tables.

To illustrate the procedure, a simple example will be carried through.

Consider the following grammar expressed in BNF as*

A - BbIaBlaCd

B - eleC

C - abBlcdB

where lower case letters represent terminals and upper case letters represent

nonterminals.

A graph is now created for each production rule as follows: Each pro-

duction graph starts on a common node and ends on a common node called the

entry and exit nodes, respectively. A path is created for each replacement

rule with the arcs corresponding to the terminals and nonterminals in the

string. The nodes are numbered arbitrarily. Thus, for the above example, the

graphs become

* For convenience of typing at a computer console, the "replacement"

symbol ::- was replaced by -.

9
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Note in the reduction of B that an exit node and a nonexit node were combined

into an exit node.

The BNF graphs may now be converted into LDT entries. This is done by

setting up information packets for each node in each BNF graphs which identi-

fies all possible next terminal tokens and a list of nodes passed through in

the various graphs. For example, consider node A4 ' There are two paths

leaving node A4, one ending on A3 and the other on A7, but both arcs are non-

terminals. Two partial node stacks are started, one with A3 on top and the

other with A 7 on top. Following the arc with a B label, go to the starting

node of rule B, B1 . A single arc leaves B with a terminal symbol, e, and

ends on B3 . Thus, the packet is
3*

e; A3 B3

where e is a possible next token and A3B3 represents the partial node stack

associated with the corresponding path, where B3 is the top stack entry.

In exactly the same manner, the arc labelled C gives two packets, viz.

a;A 7 C2  and c;A 7C5

Table 1 gives the complete language definition table for this grammar.

This algorithm has been programmed to run on a PDP-11/03 and is

currently operational.

2.1.3 A Program Structured Computer [19]

Another type of HHL architecture, a Data Flow architecture, does not

attempt to execute an HLL directly, but instead presents execution hardware

which is optimal for concurrent task execution. Like the conventional archi-

tectures, hardware is optimized for execution speed and this hardware needs

11



TABLE 1

LANGUAGE DEFINITION TABLE

A1 : a;A 1  e;A 2B3

A2: b;A3

A3: exit -

A e;A3B a;A7C c;A 7 C5

A7 : d;A3

BI: e;B3

B 2: exit -

B 3: exit a;B 2 B2  a;B 2C5

C1 : a;C 2  a;C 5

C2: b;C 3

C3: e;C 4 B3

C: exit -
4

C5: d;C 3

a compiler to translate from HLL to machine code. Unlike the conventional

architecture, Data Flow architectures are distributed architectures which are

also optimized for convurrent processing.

Execution flow of programs for data path oriented architectures may be

conceptualized as graphs which indicate data and control flow. Nodes in these

12



program graphs represent data functions (partical result calculations) or

flow'control junctions. Data functions include conventional arithmetic and

logic functions and control junctions include switches which allow or impede

data flow, and comparators which generate switch control information. In a

data-driven architecture, function nodes are said to be active or enabled when

all the inputs to that node are valid. As an example, the graph of the arith-

metic expression:

Y - (A*B + C/D) - (E^F)

is represented by a path program resembling its execution tree as shown in

Figure 3. In this graph, the *, /, and ^ (exponentiation) nodes are active

as soon as the data operands A and B, C and D, and E and F are valid,

A B C D E F

II _

Y

Figure 3. Arithmetic Expression Exeution Tree

respectively. When the results of the multiplication and division are both

valid, the addition node is activated. As soon as this sum has been computed

and the exponentiation result is valid, the subtraction node is valid.

The different types of node for a Data Flow graph, its "actors," are

shown in Figure 4. An operator takes data inputs, performs the specified

(arithmetic) operation producing a data output. A decider compares two data

13
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0
(a) operator (b) decider (c) T - gate

F T FAND,OR,NOT

(d) F - gate (e) merge (f) boolein operator

Figure 4. "Actors of the basic data-flow language."

inputs and generates either a TRUE or a FALSE control output. This control

output is used by the T and F gates, and Merge actors. The T and F gates are

switches, or valves, which allow data flow from their input to their output

only when their control input corresponds to their type (i.e., a T gate

passes data on a T control signal only, a F gate passes data on an F control

signal only). The merge operator outputs one of its two data inputs depending

upon the value of its control input. As an example of these operators applied

to a simple program, a program to compute N Factorial:

INPUT N

F- 1

FOR I- I TO N

F= I * F

NEXT I

PRINT F

might be represented by a more complicated Data/Control graph of the form of

Figure 5.

14



1

Figure 5. Data driven flow graph for N!

Execution Modules (EMs) are the functional building blocks of the

Program Structured Machine. These EMs implement primitive operations which

include a basic set of arithmetic and control functions. The PSM inter-

connects EMs so they execute in conjunction with one another to perform

functions more complex than those available as primitives. This EM inter-

connection, which is similar logically but not physically to an Array Machine

net, is also called a net.

Execution Modules are functional blocks which implement the primitive

operations of the PSM. As shown in the block diagram of Figure 6, an EM

performs an input specified function, Fc, on a set of inputs, X1 X2 ... Xi,

Ix I 2 x 13 x . I n

Z =Fc(xi,xZ,X3,...,Xn)=C

z

Figure 6. Execution Module Block Diagram
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yielding a result which is output as Z. A "ready line" (dotted) associated

with each vector of the data lines (XI X2 ... Xi, Z) indicates when data is

valid.

After an EM has received the valid input data necessary for a calcu-

lation, it performs the function Fc and outputs the valid data (on Z) and a

"data ready" signal (on z).

EMs are not constrained to be identical as in the Array Machine. Some

EMs may implement only a single function (e.g., hardware multiply) in which

case the control input C is not necessary. Other EMs use the control input

to determine which of a list of functions to execute (e.g., a general purpose

ALU EM). An EM is a function block. The method used to implement its function,

whether it be by software or special purpose hardware, is transparent to the

rest of the machine. Functions (Fc's) performed by EMs include data operations

(e.g., addition, multiplication), data storage (e.g., variable references and

assignments), and sequence control functions (e.g., IF...THEN...ELSE, WHILE

loops). Each of these functional modules have been investigated and tentative

designs proposed.

The interconnection of these various modules and their reconfiguration

for changing programs presents some difficulties. One promising approach

which was investigated was a single frequency multiplexed bus. Using this

approach, the program structured machine appears as shown in Figure 7. In

this organization, each execution module outputs at a unique carrier fre-

quency. The module interconnection is made by programming the various module

inputs to listen to the appropriate frequencies. In its simplist form, the

controller contains a single register with a field for every execution module

input. These fields then define the listening frequency for the various inputs

and thus the interconnection of the modules.

16



?SM Data Bus

X

C jDef

Controller

Figure 7. Block Diagram of the PSM

Various controller schemes were investigated including one in which

modules could be dynamically reallocated. Thus, when a module completed its

task, and is not to be used again in the program, it can be used elsewhere

to perform tasks arising in later sections of the program.

The details of this work are described completely in [19].

2.2 Faulty System

Current technology, in particular VLSI, requires that system designers

design in not only reliability but testability too. One problem with designing

in reliability is measuring the effects of redundancy on the overall system

reliability. It is conceivable that the addition of a redundant circuit could

reduce reliability rather than increase it. Because of this, an effort was

undertaken to derive an accurate measure of the effects of redundancy on

system reliability.

Any circuit, no matter how reliable, will eventually fail. When this

occurs, it is important that the problem be located and fixed as quickly as

possible. Since much of the behavior of sequential circuits can be identified

by breaking the feedback paths and testing the resulting combinatorial

circuits, procedures were investigated which could be used in the design of

combinatorial networks to make them testable for all "stuck at" faults with a

very small number of test sequences.

17



These two efforts are described in the next two subsections.

2.2.1 Fault Tolerant Computing Structures [6, 16]

In designing fault tolerant computing systems, there is little

theoretical basis on which to compare and judge the overall reliability.

Yet systems requiring a very high degree of reliability are becoming more

important in many scientific and business applications. One goal of this

research was to develop analysis techniques which could make it possible to

identify subsystem reliability and thereby locate components having a higher

than average likelihood of failure. Such systems could then be redesigned

to make them more fault tolerant.

In estimating the reliability of a hybrid modular redundant (HMR)

system, there are two basic levels at which modeling can be done. At the

module-level, the reliability, or mission-success probability, is the probability

that some subset of the active and spare modules operate correctly over the

length of the mission. Such a model, while providing a good first approximation

of reliability, does not usually consider the effects of imperfect voting,

switching and disagreement-detecting (VSD).

For an accurate model of an IHM system with imperfect, VSD, faults

must be examined in the context of specific circuit inputs and states. This

level of modeling, while providing extremely accurate results, quickly becomes

impractical as the numbers of circuit components and inputs increase.

To combine the accuracy of logic-level reliability analysis with the

&implicity of modular analysis, a method has been developed to link the two

techniques through the use of module "characteristic parameters" (CP's). The

CP's of a module are accurately evaluated at the logic level so that they

completely describe the module behavior in the overall system. The module CP's

are then combined to provide the overall reliability estimate for the system.

18



Consider a logic circuit C having a single output line Z. There are

four possible, mutually exclusive events that could occur involving Z:

1) Z - 0 correctly 3) Z - 0 incorrectly

2) Z = 1 correctly 4) Z = 1 incorrectly

The occurrence probabilities of these four events will be used as the CP's of

circuit C. In particular, if Zd denotes the desired value of Z at some time

and if Z is the actual value, then the CP's of circuit C are given by:
a

Pr[Z-0 correctly] = Pr[Z a . 0 , Zd = 0] (i)

Pr[Z -1 correctly] - Pr[Za -1, Zd w 1] (2)

Pr(Z-0 incorrectly] - Pr[Z a = 0, Zd = 1] (3)

Pr(Z -l incorrectly] = Pr(Z - i, Zd = 0] (4)

To verify that the parameters defined above completely describe the

stochastic behavior of a module, consider a circuit C0 that can be represented

by the series combination of single-output modules C1 and C2 as in Figure 8.

Define:

-------------------- -
0

i I

Figure 8. Series Representative of CO.

T(Z) - {wIZ(w) 1 } , F(Z) - {w/Z( i) - O} (5)

where optput Z of C0 can be represented as a switching function, Z(w), of output

in1 oEC Let

W of CV Let FC2 denote the occurrence of some fault in C2. It can be proved

that:

19



Pr(Za 0 , Zd 
0 ) a Pr[wa F(Z); wd GF(Z)] -Pr[w dEF(Z)]

*Pr[Fc 2 ]{I- Pr[Z = O/deF(Z), FC2 ]} (6)

The terms on the right side of the Eq. (6) are broken down as follows:

Pr[w acF(Z); wd EF(Z)] - directly related to CP's of CI

Pr[wdcF(Z)] = directly related to CP's of C1

Pr[Fc21 = physical property of C2

Pr[Z a - 0 dE F (Z ) , FC2] = logical property of C2

Thus, the CP's of C completely describe the behavior of C . Expressions

similar to (6) are obtained for the other three CP's of CO.

The evaluation of the CP's of a circuit C consists of summing the

probabilities that input vector Xin is in the test set of each of the possible

faults in C. Assume that the output Z can be written as a function of arbitrary

logic line y as follows:

Z = yh0 + yh1  (7)

where yh0 and h1 are switching functions of the input Xin = (XI, "'.' Xn) and

h0 and h are independent of y. Then, the conditional error probabilities,

given y stuck-at-0 (s-a-0) and stuck-at-l (s-a-l) are:

Pr[Za - 1/Zd = 0 , y s-a-0]-Pr[XinEF(hO ) 1 T (h l)  (8)

Pr[Z a m / Z d n0 , y s-a-l]- Pr[X in ET(h 0 ) ( F (h l1) ]  (9)

Pr(Z a = 0 z  in , y s-a-O]u Pr(Xin T(h0 )(1F(h )] (10)

Pr[Za O/d=l, y s-a-l]P er[X inF(h0 )IT(h1 )] (11)

If it is assumed that at most one fault can be present in C at any one time,

then:

20



Pr[Z a 1, Z=0] = [Pr(Z a . 1/Z d 0, y s-a-0) Pr(Z d =0) Pr(y s-a-0)
yEC

+ Pr(Z a = I/Zd=O, y s-a-i) Pr(Zd=0) Pr(y s-a-i) (12)

and

Pr[Za 0, Z =i] = [Pr(Z a 0/Z = 1, y s-a-0) Pr(Zd =1) Pr(y s-a-0)
yEC

+ Pr(Za=O/Zd = 1, y s-a-i) Pr(Zd =1) Pr(y s-a-i) (13)

If multiple faults are to be considered, then an equation similar to (7) can be

written in terms of the logic lines of int-rest and expressions similar to those

of Eqs. (8) through (ii) used to evaluate the various conditional error probabili-

ties.

This work has also been extended to sequential circuits. It is currently

being applied to the analysis of a fault tolerant redundant structure which has

been propsed that requires no perfect elements. Figure 4 shows a block diagram

of a memory module of this multiple structured machine. The details of this

work may be found in [6, 16].

2.2.2 Designing in Testability [20]

Given a combinatorial network in a system which is required to be

highly reliable requires that diagnostics be available so that faults which

may occur in the network be located and replaced as quickly as possible. In

highly reliable systems redundancy required to maintain its appropriate re-

liability will also mask the identification of faults. Thus an effort was

undertaken to develop algorithms to add observation and control points in

combinatorial circuits to make possible the identification of all stuck-at

type faults regardless of the redundancy.

Specifically, two algorithms were developed. In the first, an analysis

procedure was investigated which identifies redundancy in combinatorial networks.

21
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Based on this information a systematic procedure for redesigning the circuit

is presented which allows a minimum number of test points and control inputs

to be added for complete identification of all stuck-at faults. The second

algorithm creates the test set for a complete analysis of all single stuck-at

faults. This test set is near minimal and is generated in a very straight

forward manner. The details of this work are described in detail in [20].

2.3 Multi Processing System [1,2,3,17]

An increasing number of real-world problems involve the processing of

data in an array fashion. Whether the problem involves image processing,

spectrum analysis, or meteorological predictions, a very large amount of computing

power is required--not to mention system software. To investigate the possibility

of special purpose hardware helping resolve these load problems, five tasks were

undertaken: a) a 128 x 128 bit, binary array processor was constructed,

b) a high level array processing language, which is a super-

set of Fortran, called FAPL, was developed,

c) a general mathematical model for the study of neighbor-

hood transformations was completed,

d) a preliminary study of arrays of microprocessors for

complex, two-dimensional system modeling was begun, and

e) inexpensive facsimile equipment coupled to an Apple

computer was used to process images.

The results of these projects are described in what follows.

2.3.1 Image Array Processor

It has been proposed that the processing of real time images can be

performed most efficiently when the structure of the processor closely resembles

the structure of the data to be operated upon. Thus, one would expect that

image processing operations can be implemented more easily within an array

processor than the normal serial processor. Basically, an array processor
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consists of a tesselation of the plane by processing elements, each executing

the same instruction stream issued by a single central controller. Such an

array processor has been built and is currently in operation. This array

processor is implemented as a finite 128 x 128 array of one bit binary processors

with facilities built in for expansion to 256x256 [1,2]. A rectangular tessel-

ation is used, with each processing element possessing connections to its eight

nearest neighbors as well as to its own private accumulator and memory as shown

in Figure 10.

private memory

M 1

from eight neighboring
p . "accumulators

A private accumulator

Figure 10. Array Processor Element

Each processing element can form any of the 16 possible Boolean

functions of two variables via the Bus Function Generator (BFG) using any two

of the following as inputs: the present contents of its accumulator, the

present contents of any of its memory cells, and a threshold function of the

accumulators of its eight nearest neighbors, denoted f(A). Specifically,
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8
f(A) 1 if I Ai Wi<T (14)

1

0 otherwise

where

WiE +i, 0, -1}, the 8 weights

AiE {0, 1}, the ith out of 8 nearest neighboring accumulators

TE [-8, 7], the threshold (15)

This organization is summarized in Figure 11. A bus-oriented structure

was used for maximum flexibility in interconnecting the various registers and

for future expansion of additional [/0 devices, such as a direct TV camera

interface and various hard-wired masks. Inputs to the BFG consist of the

Main (M) and Secondary (S) buses, each of which can be driven by any of eight

possible devices selected under program control. Any or all of the devices can

receive information from the Output (0) bus simultaneously, also selected under

the program control.

Because of cost considerations, the processor was actually implemented

as a serial realization using dynamic shift register memory. This fact, how-

ever, is transparent to the user. Pipelining was used extensively in the

threshold logic and in the BFG, allowing a clock rate of 5 MHz--the limit of

the dynamic shift register memory. Instruction execution times are on the

order of 10 ms., as compared with almost two seconds on the array processor

simulator which ran on the PDP-9. Image transformations of only moderate com-

plexity consisting of perhaps 2000 operations required over an hour of computer

time using the software simulator. The time for such a transformation has been

cut to 20 seconds with the array processor, allowing the experimentation with

transformations which had been timewise impractical to attempt.
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The use of special-purpose hardware is facilitated greatly by high-

level languages which relate software constructs to hardware capability. Be-

cause of this an array processing language was developed for this system which

is a superset of Fortran and has been dubbed FAPL for Fortran Array Processing

Language. One goal of this language is to make software portable between two

installations which both have array processors of the type described above.

To this end, the syntactic definitions of FAPL for the given installation are

written in Backus Naur Form (BNF). These definitions are then converted into

a tabular form suitable for deriving the parser by an auxiliary program. Both

the auxiliary program and the parser were written in Fortran for immediate

portability. The parser sets up the semantic processes by emitting object code

for host machine. Thus only the object code emitters and the BNF syntax

definitions need be altered to make a FAPL program portable from one system

to any other. Figure 12 shows the organization of the FAPL compiler. The

details and the syntactical descriptions are described in [1].

2.3.2 A Mathematical Model for Array Processing Neighborhood Transformations [3]

In application, array processors operate on data in some local neighbor-

hood, i.e., data coming from neighboring processors. To help in the under-

standing of such processes, the development of mathematical foundations and

models for a neighborhood transformation was undertaken. This investigation

was aimed primarily at image processing but easily generalizes to other forms

of array processing.

Neighborhood transformations are image transformations in which new

values of each element is a function of its "neighborhood" elements. Currently,

neighborhood transformations are not particularly useful except in low-level

processing functions such as extraction of the perimeter (boundary) of objects,

object counting, or "skeleton" extraction. The value of neighborhood transfor-
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28



mations lie in the speed at which they can be performed, especially with binary

(black and white) images. An array processor which is a uniform interconnection

of elementary processors ("cells"), can perform single neighborhood transfor-

mations in one clock time since the transformations for all elements are computed

simultaneously. The object of this investigation is to develop an algebraic

theory of neighborhood transformations to allow the use of a small set of

transformations to become a set of primitives which can be used as necessary

to build more sophisticated functions.

Since the purpose of this research is to develop a general mathematical

foundation for the use of neighborhood transformations, image and image operations

are defined abstractly. An image is an infinite, n-dimensional array of elements,

each of which is labelled with a unique n-tuple of integers. The values that

the elements can take are members of a Boolean algebra. The images are all

considered to be bounded; that is, all the image elements outside some finite

region within the image have a common value, known as the background constant

of that image.

Five image operations are defined. Image complementation, produce, sum,

Boolean convolution, and Boolean division. The first three are the corres-

ponding Boolean operations applied element-by-element to images. Boolean con-

volution, denoted "*," is the discrete convolution between image elements, uaing

Boolean sum and product. Boolean image division between images A and B is de-

fined in terms of Boolean image convolution and image complement: A B f A * Bt ,

where the element Bt are the elements of B reflected about the origin for each

neighborhood. Boolean convolution and division are shown to be generalizations

of neighborhood transformations commonly known as expansion, or dilation, and

shrink, or erosion.

An algebraic structure for bounded, Boolean-valued images was developed

with several lemmas and theorems. This structure, a hybrid of integer-like
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arithmetic and Boolean algebra, provides a framework for the analytical

manipulation of images. The theorems were applied to the solution of an

image equation, providing necessary and sufficient conditions for solutions

as well as bounds on the solution. One theorem, a division algorithm for

images, provides for a "power" series representation of images, analogous to

the common integer radix expression. This power series is shown to have

several applications, including template matching, feature extraction, image

filtering, and data compression. Several known applications of neighborhood

processing, such as noise removal, and boundary smoothing, are shown to be

special cases of applications of the series representation of images.

Several application considerations are approached, including minimizing

boundary effects in finite image windows and possible extensions to real-

valued images. Preliminary investigations suggest that images whose elements

are probabilities of being white (or black) belong to a similar algebraic

structure.

Further research will focus on refinement of the algebraic structure,

extensions to real-valued images, and application of the theorems. It appears

that there are yet many unexplored areas in analytical properties of images,

especially with respect to a class of functions described as the interior and

closure of Boolean-valued images. The applications of this research has been

primarily generalizations of known applications, and it is expected that a

new set of feature extraction algorithms can be developed from this framework.

The details of this work may be found in [3].

2.3.3 A Multiprocessor Array Structure [17].

The modeling of spacial problems by conventional, single processor

systems generally creates some very real and difficult software design
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problems. The main difficulty arises because of two factors. The first

is the overhead requirement for managing the multiple data sets representing

the various spatial model points. The second difficulty arises for problems

in which the physical model varies from one point in space to another and

this requires different programs to represent each model. An example might

be the modeling of stresses in metals which contain impure particles, grossly

different in characteristic from the surrounding matrix.

The development of software systems for representing such problems

can be an extremely time consuming and costly effort. To help alleviate the

difficulties encountered and thereby reduce development costs, a special-purpose

computer structure is being investigated which should be capable of eliminating

all of the overhead which is required by conventional, single processor simu-

lations. This single processor structure basically consists of a conventional

microprocessor, in this case a Motorola 6809, a large block of semiconductor

memory and special memory addressing hardware. Figure 13 shows a block

diagram of this structure. Simulation processing proceeds as follows.

The single processor executes the simulation by assuming that it is a

single node of the array, performs the necessary computations for that node,

and setps on to the next node. This node scanning is done in a raster fashion.

The added addressing hardware allows the processor to load two registers (X and

Y) with coordinates of the node to be processed. The processor then need only

specify which of the adjacent nodes is to be accessed, and the relative location

of the desired data within that node. The addressing hardware performs the

necessary address corrections to access the proper location in memory. Pro-

vision is also made for the address hardware to properly recognize and direct

boundary condition addressing, and new data generated for the next iteration

of the array.
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Figure 13. Single Processor Array Processor Simulation.

A design for this structure has been completed and a simulation of the

structure is currently being written for a DEC PDP-ll/03. More details will

be discussed in Section 4 and a complete description of this effort will be

presented in [17].

2.3.4 Fascimile Image Processing [21]

A small effort was undertaken to implement image array processing at a

very low cost. To this end, a standard Qwip Facsimile transceiver was interfaced

to an Apple II computer. Such a system has a number of advantages not least

of which is a simple system for long distance image transmission and processing.

The images processed in this small effort were primarily medical images. It

was found that horizontal resolution of about 1/3 mm and vertical resolution of
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roughly the same was possible with a gray level resolution of 8 levels from

black to white.

Two experiemnts were undertaken. In one, the circumference of tooth

root sections were made. This was accomplished by storing the image digitized

by the fascimile equipment and then tracking the boundary of the tooth. The

second experiment involved measuring the crystae density in heart cell mitochondria.

This was done by forming a spatial first difference at each fixed and summing

the results after thresholding. Since the crystae have a very striated

structure, a large first difference will be associated with their presence and

a small value otherwise. Both experiments were relatively successful and

this demonstrated the feasibility of using such simple equipment for a rather

specialized and complex problem. Details of this work may be found in [21].

2.4 Distributed Loop Networks

One final area of research which was completed during the past year

involved an investigation of a Distributed Loop Computer Network (DLCN). The

results of this work have been detailed in [7 to 14] and are briefly summarized

below.

1. A loop interface design using the state-of-the-art, off-the-shelf

LSI components (the Am2900 series) has been completed [8]. The microprocessor-

based implementation will allow great flexibility, power and speed of trans-

mission for the loop at low cost. The design is general enough so that the

interface can be used for any type of distributed loop networks [14].

2. A performance study of three popular types of loop networks using

queueing analysis has been completed [7]. This study veritifes our previous

claim that the DLCN loop has superior performance (shorter message delay and

higher channel utilization) over both Newhall and Pierce loops.

3. Performance studies of both DLCN loop communication subnet and

whole DLCN network ware also carried out in [9, 11]. Closed formulas for
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calculating several design parameters of interest (viz., average response time

to the user, mean queue lengths, channel and processor utilizations, etc.) have

been obtained.

4. Architectural design of the Distributed Loop Data Base System (DLDBS)

for DLCN has been completed [10]. The system architecture of DLDBS is very

general, so that new concepts can be applied to many system environments.

5. A general model is proposed for distributed processing that is

based on interactions among independent processes [12]. This model generalizes

the hierarchical structure that is traditionally used as the model of control

and that forces a parent-son relationship between processes. It is shown

that the traditional hierarchical control structure can be easily simulated

as a special case of our general model.

6. A new class of high-level protocols, called N-process communication

protocols, has been proposed to manipulate exchange of messages among the N

processes [13]. This class of protocols is a generalization of popular two-

process protocols currently used by the ARPANET and NSW, and is application

dependent.

The major goal of DLCN research has been to investigate the feasibility

of providing efficient, inexpensive, reliable and flexible computing service

for a local user community. Such a computing environment is frequently found

today in many military installations and university campuses. DLCN system

design involves many innovative ideas and careful integration of hardware,

software, and communication technologies.

3. Publications

Most of the work described above has been or is being prepared for

publication in some form. The following list represents all reviewed publi-

cations produced with the support of Grant AF-AFPSR-77-3400. Papers currently

in preparation or which have been submitted for publication but have not yet

appeared are also listed.
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